Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome.
نویسندگان
چکیده
The proteasome is a key intracellular protease that regulates processes, such as signal transduction and protein quality control, through the selective degradation of specific proteins. Signals that target a protein for degradation, collectively known as degrons, have been defined for many proteins involved in cell signaling. However, the molecular signals involved in recognition and degradation of proteins damaged by oxidation have not been completely defined. The current study used biochemical and spectroscopic measurements to define the properties in calmodulin that initiate degradation by the 20S proteasome. Our experimental approach involved the generation of multiple calmodulin mutants with specific Met replaced by Leu. This strategy of site-directed mutagenesis permitted site-selective oxidation of Met to Met sulfoxide. We found that the oxidation-induced loss of secondary structure, as measured by circular dichroism, correlated with the rate of degradation for wild-type and mutants containing Leu substitutions in the C-terminus. However, no degradation was observed for mutants with Met to Leu substitution in the N-terminus, suggesting that oxidation-induced structural unfolding in the N-terminal region is essential for degradation by the 20S proteasome. Experiments comparing the thermodynamic stability of CaM mutants helped to further localize the critical site of oxidation-induced focal disruption between residues 51 and 72 in the N-terminal region. This work brings new biochemical and structural clarity to the concept of the degron, the portion of a protein that determines its susceptibility to degradation by the proteasome.
منابع مشابه
Selective degradation of oxidized calmodulin by the 20 S proteasome.
We have investigated the mechanisms that target oxidized calmodulin for degradation by the proteasome. After methionine oxidation within calmodulin, rates of degradation by the 20 S proteasome are substantially enhanced. Mass spectrometry was used to identify the time course of the proteolytic fragments released from the proteasome. Oxidized calmodulin is initially degraded into large proteolyt...
متن کاملRegulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent...
متن کاملQuinone reductase acts as a redox switch of the 20S yeast proteasome.
The proteasome has an essential function in the intracellular degradation of protein in eukaryotic cells. We found that the dimeric quinone reductase Lot6 uses the flavin mononucleotide (FMN)-binding site to bind to the 20S proteasome with a 1:2 stoichiometry-that is, one 20S proteasome molecule can associate with two quinone reductases. Furthermore, reduction of the FMN cofactor by either NADH...
متن کاملPoly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a hi...
متن کاملRole of protein and mRNA oxidation in seed dormancy and germination
Reactive oxygen species (ROS) are key players in the regulation of seed germination and dormancy. Although their regulated accumulation is a prerequisite for germination, the cellular basis of their action remains unknown, but very challenging to elucidate due to the lack of specificity of these compounds that can potentially react with all biomolecules. Among these, nucleic acids and proteins ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 48 13 شماره
صفحات -
تاریخ انتشار 2009